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Asynchronously parallelized percolation on distributed machines
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We propose a powerful method based on the Hoshen-Kopelman algorithm for simulating percolation asyn-
chronously on distributed machines. Our method demands very little of hardware and yet we are able to make
high precision measurements on very large lattices. We implement our method to calculate various cluster size
distributions on large lattices of different aspect ratios spanning three orders of magnitude for two-dimensional
site and bond percolation. We find that the nonuniversal constants in the scaling function for the cluster size
distribution apparently satisfy a scaling relation, and that the moment ratios for the largest cluster size distri-
bution reveal a characteristic aspect ratio atr'9.
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Although an old problem@1#, percolation continues to at
tract a steady stream of papers@2–4#. High-quality numerical
data are required to corroborate the many analytical res
particularly from conformal field theory@5–8#. In this paper,
we describe a method of simulating percolation that ru
asynchronously in parallel on almost any hardware. In p
ciple, the method relaxes all the standard constraints in
merical simulations of percolation, such as CPU pow
memory, and network capacity. It is especially suited for c
culating cluster size distributions, finite size correctio
crossing probabilities, and, by applying the correspond
boundary conditions, distributions of wrapping clusters
different topologies, e.g., cylinder, torus, or the Mo¨bius strip.

The Hoshen-Kopelman algorithm~HKA ! @9# is still the
standard technique for identifying clusters in percolatio
where a cluster is a set of sites connected via nearest ne
bor interactions~site percolation! or active bonds~bond per-
colation!. Strictly speaking, it is a type of data representat
particularly suited for tracking clusters. Recently, Newm
and Ziff @4# have shown how to exploit this data represen
tion to monitor the change in various observables as the
cupation probabilityp is increased. The data representati
efficiently encodes the connectivity of clusters in a large p
colation system. In this paper we show how to exploit t
representation for different system sizes~up to '531014

sites! and aspect ratios. The algorithm runs asynchronou
in parallel over an almost arbitrarily slow network of com
puters. The network is hierarchically organized, and no
on lower levels~slave nodes! can be slow and heterogeneou
In fact, the system scales like an ideal parallel computer:
overall computing time decreases linearly with the num
of nodes, especially for large slave lattices~patches! where
the overhead due to networking and related processing
the CPU-time at higher levels~master nodes! becomes neg-
ligible ~see Table I!. Other memory-efficient methods exi
for constructing large clusters, for example Paul, Ziff, a
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Stanley@10#. In that paper a variant of the Leath algorithm
used@11#, together with a data structure to record inform
tion about visited sites. As a result, memory is made av
able as and when it is required. In our method we can ea
count the number of spanning clusters per realization, ap
different boundary conditions, rearrange patches for differ
aspect ratios, and gather statistics at every stage of la
construction.

We describe our method in detail for two-dimensional s
percolation on a square lattice and present the overall clu
size distribution for different aspect ratios, as well as t
universal moment ratios for the distribution of the order p
rameter in site and bond percolation. We find two surpris
results. First, the nonuniversal amplitudes in the scal
function for the cluster number distribution numerically sa
isfy a scaling relation. Second, the moment ratios for
largest cluster size distribution all peak atr'9, defining a
characteristic aspect ratio.

The basic idea of the method is that many slave no
independently simulate lattices of equal linear sizeL in par-
allel using the HKA. These nodes send a special represe
tion of their lattice border to a master node, which combin
m of these patches to form a superlattice. The advantag
such a decomposition is that the master node can buildu
very large superlattice while maintaining the large scale h
tograms. The master node can apply different boundary c
ditions and even reuse the same patches several time

TABLE I. The optimal number of slaves and relative networ
ing overhead of the slave nodes. The master node used was rou
twice as fast as the slave nodes and applied six different boun
conditions on 14 different aspect ratios from each set of 900 patc
of sizeL2 produced by the slaves.

L Slave nodes per master Approximate overhea

100 2 4.8%
200 4 2.9%
500 10 1.4%
1000 22 1.7%
©2003 The American Physical Society01-1
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rotating, mirroring, and permuting them.
The key to our algorithm is the representation of the l

tice borders by the slave nodes. This is essentially a form
path compression~or Nakanishi label recycling@12#!, where
all border sites are considered active~i.e., possibly changing
connectivity! and bulk sites are considered inactive. In th
representation information about the connectivity and size
any cluster connected to the border is summarized enti
within border sites. The spatial information of clusters
neither required nor stored. Thus clusters not connecte
the border are ignored, although their contribution to
cluster size histogram is recorded locally.

The HKA produces a list of labels, to which all activ
sites refer in order to identify their cluster, see Fig. 1~a!.
After the realization of a lattice, anewborder representation
is prepared by visiting each border site in succession,
dexed from 1 to 4L24, see Fig. 1~b!. The first site of a
previously unscanned cluster contains the size of the clu
as a negative value in the range@21,2L2#. This site is
called the root. In the list of labels of the original represe
tation, the label of this cluster is changed to indicate the n
location of the root site in the border. All other sites in t
border which belong to the same cluster refer to this site.
slave nodes send the border configuration in this represe
tion to the master node. If required, clusters in the bulk h

FIG. 1. ~a! The lattice and the list of labels,l @ i #, as prepared by
the HKA. ~b! The border configuration suitable for the master no
after a clockwise border scan starting in the upper left-hand cor
with the list of labels now being irrelevant. For the reader’s con
nience, labels pointing to sitesi in the new border carry a suffixi b .

FIG. 2. ~a! The configuration of the borders before two cluste
merge at the marked labels. The labels in the right patch are sh
by 4L24 to make them unique.~b! The configuration of the bor-
ders after the merging procedure. Labels which have changed
shown in white.
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their sizes recorded in a local histogram, i.e., at the sl
node that produced the lattice. This histogram is stored
cally for the duration of the simulation. The master node
the only component that requires enough memory to hold
large histogram~s! usually generated in large scale simul
tions, while the slaves only need to store a very sm
amount of local data.

When two patches are combined by the master~gluing! it
is possible that two clusters merge at the border. This
realized by setting one of the root labels~preferably from the
smaller cluster! to point to the other, as shown in Fig. 2. Th
master’s histogram is updated by removing both cluster s
(4 and 8 in the example! and replacing them by their sum
By adding the site-normalized histogram of the slaves~i.e.,
the number density ofs clusters!, nslv(s), to the site-
normalized histogram on the master node,nmst(s), the total
histogram,n(s) is obtained,

n~s!5nmst~s!1nslv~s!. ~1!

This result does not involve any approximation and is ind
pendent of the number of realizations. Because the supe
sition Eq. ~1! can be postponed until postprocessing, t
slaves can store these data locally. Moreover, because
relevant information is encoded in the patches, when
whence they arrive at the master node is arbitrary. Hence
algorithm is asynchronous, in contrast to standard techniq
of parallelization, for example Ref.@13#.

The master node can itself be considered a slave node
prepare a border configuration for another master node
that one obtains a treelike structure of master and sl
nodes, where statistics can be obtained on every level.
have used this scheme to produce a single lattice of
(22.23106)2 sites, and have calculated its cluster size dis
bution. For largeL the CPU-time required for networking
becomes negligible, as shown in Table I. The complexity
the master gluing algorithm isO(mL logL), while the slaves
needO(L2logL) time to produce a patch, which is repre
sented inO(L) memory. Therefore, the optimal number
slaves per master in which the master fully utilizes its
sources, while not blocking any slaves, scales likeL. At the
same time, the relative networking overhead per slave sc
like 1/L. Table I shows the corresponding measurements

Debarring correlations introduced by the random num
generator, all patches arriving at the master are statistic
independent. However, it is possible to recycle incom
patches by arranging them in different configurations~e.g.,
boundary conditions or aspect ratios!. The results for these
different configurations arenot statistically independent. An
upper bound can be calculated for the error introduced
this procedure. Rather than recycling all patchesq times~for
example, forq514 different aspect ratios!, one could distrib-
ute them evenly amongq bins, now all statistically indepen
dent. The error in the estimator for the mean of an observa
in the q bins would be a factorAq larger than that for the
complete sample. Therefore, when considering results foq
bins while using the same complete sample in each bin,
upper bound for the error isAq times the error for the com
plete set. When patches are recycled it is possible to red
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the correlations by randomly rotating, mirroring and perm
ing them. We have done this in all simulations.

As an application of the algorithm, various cluster si
distributions for site and bond percolation forq514 different
aspect ratios,r 5 width/height, between 1 and 900 were ca
culated. The slaves produced square patches of three d
ent sizes,L510,100,1000, of whichm5900 were glued at
the master node to formq superlattices with N
53002,30002,30 0002 sites. The simulations were performe
at critical densitypc50.592 746 21 for site percolation@4#,
andpc51/2 for bond percolation@14#. All numerical results
are based on at least 106 independent realizations~i.e.,
roughly 109 realizations at the slave nodes!. Free boundary
conditions have been applied everywhere. The random n
ber generator used was the so-called Mersenne-Twister@15#,
which is highly suitable for parallel simulations.

The site-normalized cluster size distributionns,b(s;r ) is
the number density ofs-clusters for aspect ratior. Hence-
forth, subscriptss and b refer to site and bond percolation
respectively. For large cluster sizes nearpc , ns,b(s;r ) is ex-
pected to behave like

ns,b~s;r !5as,b~r !s2tG~s/ss,b
0 ;r !, ~2!

where, in a finite system of effective sizeL̃, ss,b
0

5bs,b(r )L̃D, andG is the scaling function. The effective siz
can be taken as anything that scales linearly inAN. The
universal critical exponents aret and D, while the ampli-
tudesas,b(r ) and bs,b(r ) are nonuniversal, and set by tw
arbitrary conditions onG. Figure 3 showsstns(s;r ) for dif-
ferent values ofr, usingt5187/91@16#.

Two interesting features emerge. Independently ofL, the
shape of the distribution changes abruptly at aroundr
52.25 and the maximum of the rescaled distribution
seemingly constant for largerr. Therefore, there is no pos

FIG. 3. The rescaled and binned distributionstns(s) for systems
containingN530 0002 sites. The inset showsstns(s) ~solid line!,
stnmax;s(s)/N, ~long-dashed line!, and their difference~dotted line!,
for r 51. Evidently, the bump in the distribution is derived main
from the largest clusters.
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sible choice ofL̃ that can collapse the scaling function fo
different aspect ratios, andG explicitly depends onr. The
inset in Fig. 3 showsns(s;r )2nmax;s(s;r)/N at r 51, where
nmax;s,b(s;r) denotes the distribution of the size of the large
cluster. It seems that the sudden change in the shap
ns,b(s;r ) is caused by a change innmax;s,b(s;r), but what hap-
pens at this particular value ofr remains an open question

If we define the moment ratios as

Vm;s,b~r ![
^sm&s,b~r !N

^s2&s,b
m/2~r !Nm/2

~3!

with ^sk&s,b(r )[*skns,b(s;r )ds, then site and bond percola
tion should differ by powers of the factor

as~r !/ab~r !

~bs~r !/bb~r !!t21
, ~4!

which is obtained by calculating the moments with the h
of Eq. ~2!. However, we find numerically that this factor
unity, i.e., that the ratioa(r )/b(r )t21 is the same for site and
bond percolation. This ratio is not a universal function, b
cause its value depends on the conditions imposed onG for
determining a(r ) and b(r ). However, numerics sugges
strongly that, once these conditions are given, this ratio
independent of the lattice type, i.e., Eq.~3! represents auni-
versalmoment ratio. Therefore, it is possible to write

as,b~r !5bs,b
t21~r !q~r !, ~5!

whereq(r ) depends only on the choice of the two conditio
imposed onG, but not on the lattice type. As mentione
above,G is necessarily an explicit function ofr, so that it can
absorbq(r ) defined in Eq.~5!, thereby fixing one of the two
conditions onG. The remaining condition determines~to-
gether with the choice ofL̃) the remaining free paramete
Consequently, we conclude that Eq.~2! can be replaced by

FIG. 4. Universal moment ratiosgm;s,b(r ) for different aspect
ratios and system sizes.
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ns,b~s;r !5bs,b
t21~r !s2tG̃~s/~ND/2bs,b!;r !.

Of course,bs,b(r )t21 cannot be absorbed intoG in the same
way asq(r ) because it depends on the lattice type. Thus
the characteristics of the lattice enter solely throughb. For
completeness we note that numerically the ratiosas(r )/ab(r )
andbs(r )/bb(r ) are independent ofr, no matter what condi-
tions are imposed onG.

The order parameter of percolation is the fraction of si
belonging to the spanning~or largest! cluster. Thus, one ex
pects the moment ratios

gm[
^sm&max;s,b~r !

^s2&max;s,b
m/2 ~r !

~6!

with ^sk&max;s,b(r)[*sknmax;s,b(s;r)ds to be universal. Figure 4
shows the behavior of this ratio for different aspect ratiosr.
A pronounced bump appears at aroundr 59. The origin of
the bump remains unclear, and can be used to define a
acteristic aspect ratio.

In conclusion, the method proposed in this paper perm
the use of resources usually considered too slow, smal
badly connected. At the same time, it takes advantage
tt.

ta
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parallelization by providing a very flexible framework fo
simulating different boundary conditions and aspect rati
By way of illustration, we have increased Tiggemann
former world record@13# for the largest simulated system b
a factor of 30. The new record was set by an undergradu
computer cluster~as opposed to a Cray T3E! when idle. The
data presented have remarkable numerical accuracy and
from systems of unprecedented size. They give rise t
number of urgent questions, namely, how to reconsider
nonuniversal amplitudes in Eq.~2!, and how to account for a
characteristic aspect ratio as provided by the moment ra
of the largest cluster size distribution.
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